Skip to content

HTTP Cache Using Redis

Warning

You need to install dependencies to use The HTTP Cache.

Overview

HTTP caching occurs when the browser stores local copies of web resources for faster retrieval the next time the resource is required. As your application serves resources it can attach cache headers to the response specifying the desired cache behavior.

Overview

When an item is fully cached, the browser may choose to not contact the server at all and simply use its own cached copy:

Overview

HTTP cache headers

There are two primary cache headers, Cache-Control and Expires.

Cache-Control

The Cache-Control header is the most important header to set as it effectively switches on caching in the browser. With this header in place, and set with a value that enables caching, the browser will cache the file for as long as specified. Without this header the browser will re-request the file on each subsequent request.

Expires

When accompanying the Cache-Control header, Expires simply sets a date from which the cached resource should no longer be considered valid. From this date forward the browser will request a fresh copy of the resource.

This Introduction to HTTP Caching is based on the HTTP Caching Guide.

AuthX provide a simple HTTP caching model designed to work with FastAPI,

How to install

Make sure to have the necessary dependencies installed:

$ pip install authx_extra

---> 100%

Initialize the cache

import os
import redis
from authx_extra.cache import HTTPCache
from pytz import timezone

REDIS_URL = os.environ.get("REDIS_URL", "redis://localhost:6379/3")
redis_client = redis.Redis.from_url(REDIS_URL)

africa_Casablanca = timezone('Africa/Casablanca')

HTTPCache.init(redis_url=REDIS_URL, namespace='test_namespace', tz=africa_Casablanca)

The tz attribute becomes import when the cache decorator relies on the expire_end_of_day and expire_end_of_week attributes to expire the cache key.

Define your controllers

The ttl_in_seconds expires the cache in 180 seconds. There are other approaches to take with helpers like expire_end_of_day and expires_end_of_week

from datetime import datetime
from fastapi import FastAPI, Request, Response
from fastapi.responses import JSONResponse
from authx_extra.cache import HTTPCache, cache

@app.get("/b/home")
@cache(key="b.home", ttl_in_seconds=180)
async def home(request: Request, response: Response):
    return JSONResponse({"page": "home", "datetime": str(datetime.utcnow())})

@app.get("/b/welcome")
@cache(key="b.home", end_of_week=True)
async def home(request: Request, response: Response):
    return JSONResponse({"page": "welcome", "datetime": str(datetime.utcnow())})

Building keys from parameter objects

While it's always possible to explicitly pass keys onto the key attribute, there are scenarios where the keys need to be built based on the parameters received by the controller method. For instance, in an authenticated API where the user_id is fetched as a controller Depends argument.

class User:
    id: str = "112358"

user = User()

@app.get("/b/logged-in")
@cache(key="b.logged_in.{}", obj="user", obj_attr="id")
async def logged_in(request: Request, response: Response, user=user):
    return JSONResponse(
        {"page": "home", "user": user.id, "datetime": str(datetime.utcnow())}
    )

In the example above, the key allows room for a dynamic attribute fetched from the object user. The key eventually becomes b.logged_in.112358 if the user.id returns 112358

Explicitly invalidating the cache

The cache invalidation can be managed using the @invalidate_cache decorator.

class User:
    id: str = "112358"

user = User()

@app.post("/b/logged-in")
@invalidate_cache(
    key="b.logged_in.{}", obj="user", obj_attr="id", namespace="test_namespace"
)
async def post_logged_in(request: Request, response: Response, user=user):
    return JSONResponse(
        {"page": "home", "user": user.id, "datetime": str(datetime.utcnow())}
    )

Invalidating more than one key at a time

The cache invalidation decorator allows for multiple keys to be invalidated in the same call. However, the it assumes that the object attributes generated apply all keys.

class User:
    id: str = "112358"

user = User()

@app.post("/b/logged-in")
@invalidate_cache(
    keys=["b.logged_in.{}", "b.profile.{}"], obj="user", obj_attr="id", namespace="test_namespace"
)
async def post_logged_in(request: Request, response: Response, user=user):
    return JSONResponse(
        {"page": "home", "user": user.id, "datetime": str(datetime.utcnow())}
    )

Computing ttl dynamically for cache keys using a Callable

A callable can be passed as part of the decorator to dynamically compute what the ttl for a cache key should be. For example

async def my_ttl_callable() -> int:
    return 3600

@app.get('/b/ttl_callable')
@cache(key='b.ttl_callable_expiry', ttl_func=my_ttl_callable)
async def path_with_ttl_callable(request: Request, response: Response):
    return JSONResponse(
        {"page": "path_with_ttl_callable", "datetime": str(datetime.utcnow())}
    )

The ttl_func is always assumed to be an async method

Caching methods that aren't controllers

HTTPCache works exactly the same way with regular methods. The example below explains usage of the cache in service objects and application services.

import os
import redis
from authx_extra.cache import HTTPCache, cache, invalidate_cache

REDIS_URL = os.environ.get("REDIS_URL", "redis://localhost:6379/3")
redis_client = redis.Redis.from_url(REDIS_URL)

class User:
    id: str = "112358"

user = User()


HTTPCache.init(redis_url=REDIS_URL, namespace='test_namespace')


@cache(key='cache.me', ttl_in_seconds=360)
async def cache_me(x:int, invoke_count:int):
    invoke_count = invoke_count + 1
    result = x * 2
    return [result, invoke_count]